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Abstract: The European Space Agency Sentinel-2 satellites provide multispectral images with pixel 11 
sizes down to 10 m. This high resolution allows for fast and frequent detection, classification and 12 
discrimination of various objects in the sea, which is relevant in general and specifically for the vast 13 
Arctic environment. We analyze several sets of multispectral image data from Denmark and 14 
Greenland fall and winter, and describe a supervised search and classification algorithm based on 15 
physical parameters that successfully finds and classifies all objects in the sea with reflectance above 16 
a threshold. It discriminates between objects like ships, islands, wakes, and icebergs, ice floes, and 17 
clouds with accuracy better than 90%. Pan-sharpening the infrared bands leads to classification and 18 
discrimination of ice floes and clouds better than 95%. For complex images with abundant ice floes 19 
or clouds, however, the false alarm rate dominates for small non-sailing boats. 20 
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 22 

1. Introduction 23 

Marine surveillance and situation awareness is essential for monitoring and controlling piracy, 24 
smuggling, fishing, irregular migration, trespassing, spying, traffic safety, icebergs, sea ice, 25 
shipwrecks, the environment (oil spill or pollution), etc. Black ships are non-cooperative ships with 26 
non-functioning transponder systems. Their transmission may be jammed, spoofed, sometimes 27 
experience erroneous returns, or are simply turned off deliberately or by accident. Furthermore, AIS 28 
satellite coverage at high latitudes is sparse, which means that other non-cooperative surveillance 29 
systems, including satellite or airborne systems, are required. 30 

The Sentinel satellites under the Copernicus program [1] provide excellent and freely available 31 
multispectral imagery with resolutions down to 10 m in four bands, and Synthetic Aperture Radar 32 
primarily with resolution down to 90 m in the high resolution extra wide swath ground range 33 
detection mode. Their frequent transits over the polar regions make these satellites particularly  34 
useful for Artic surveillance and for monitoring icebergs, sea-ice coverage [2,3], ships [4–17],  35 
oil spills [18–20], crop and forestation [21,22]. 36 

The orbital period is 10 days for the Sentinel-2 (S2) satellites A + B, each of which carries 37 
multispectral imaging (MSI) instruments. The image strips overlap at a given point on the Earth, and 38 
the typical revisit period for each satellite is two or three days in Europe and almost daily in the 39 
Arctic. S2 MSI has the potential to greatly improve the marine situational awareness, especially for 40 
non-cooperative ships—weather permitting.  41 

The Iceberg Alley [3] is a dangerous iceberg infested route running from west Greenland and 42 
Baffin Island and Newfoundland, down into a strait where many ships, including the Titanic, transit 43 
the North Atlantic. In September 2016, Crystal Serenity was the first cruise ship that risked sailing 44 
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from Alaska to Greenland through the Northwest Passage, which is infested with uncharted reefs, 45 
sea ice and huge icebergs. Since satellite AIS coverage is very limited at these latitudes, ships are 46 
essentially non-cooperative in the Arctic. 47 

SAR imagery [2–6] is weather independent, but generally has lower resolution, is subject to 48 
speckle noise, motion blurring, and has target and angle dependent reflection coefficients. SAR is 49 
therefore less useful for small ship detection and classification. In addition, SAR is unable to detect 50 
objects with low dielectric coefficients as wooden or glass fiber boats. The high resolution S2 MSI can, 51 
as is shown below, improve the classification, discrimination and multispectral identification of ships 52 
and threats from icebergs, unless clouds cover the sea. 53 

This article focuses on search, classification and discrimination of ships, islands, icebergs, sea 54 
ice, wakes and clouds in S2 MSI. For this reason, two regions of interest have been selected: Skagen 55 
on the northernmost tip of Denmark, where there are often a large number of ships, boats, wakes and 56 
clouds, and Nuuk the capital of Greenland where there are numerous fishing boats, icebergs and ice 57 
floes. The classification method is based on elements of principal component analyses (PCA) and also 58 
k-method algorithms [23]. The analysis identifies the most useful aspects of these methods, and 59 
provides a direct physical understanding and classification of the objects to be found and 60 
discriminated in Arctic and other environments. Based on this analysis, a supervised classification 61 
algorithm is developed that exploits both the spatial and spectral information in the multispectral 62 
images from S2 MSI. 63 

Detection is relatively easy due to the high sensitivity and dynamic range of the images, and the 64 
generally dark sea background. Recognition is based on high-resolution images that allow for an 65 
accurate and robust classification of objects from the spatial and spectral information. The accuracy 66 
and confidence of all of this is fundamentally reliant on the target’s spectral reflectances and size. The 67 
analysis and discussion of the accuracy of the recognition and identification, based on a target’s S2 68 
MSI data, are obtained as outputs from the S2 MSI detection, recognition and identification process. 69 

The paper is organized such that the S2 data are described first, followed by a description of the 70 
data analysis. Subsequently, the classification model is described based on spatial and spectral 71 
characteristic of the objects, followed by a presentation of the results for classification of ships, 72 
islands, icebergs, grey ice, wakes, etc. including a discussion of the confusion matrix and false alarms. 73 
Finally, a summary and outlook are also offered. 74 

2. Satellite Images and Method of Analysis 75 

The S2 multispectral images are analyzed by using dedicated software developed for the 76 
purpose of small object classification in large images in several multispectral bands with different 77 
pixel resolutions. The images have been preprocessed by the sen2cor algorithm for atmospheric 78 
corrections [24]. The processing is mainly designed for object search and classification, and is fast (a 79 
few seconds) depending on the size and complexity of the mega- to giga-pixel images with 4048 (12 80 
bit) grey levels. We will describe in detail how the segments are detected, and how their multispectral 81 
reflectances and several spatial properties are calculated.  82 

Subsequently, we describe a supervised classification of the segments as objects based on both 83 
spatial and spectral properties that are related to physical properties of the objects. The classification 84 
is based on—but not restricted to—standard methods from principal components analysis (PCA),  85 
k-means and Mahalonobis distances [23], but is tailored specifically to optimize the classification of 86 
smaller ships and icebergs. The success of the classification method lies in choosing the best classifiers 87 
and thresholds that correctly identify most segments.  88 

2.1. Sentinel-2 Multispectral Images 89 

S2 carries the wide-swath, high-resolution, multispectral imager (MSI) with 13 spectral bands 90 
with 10, 20 or 60 m resolution [1]. As we are interested in detailed small object classification and 91 
discrimination, we will focus on analyzing the four bands with 10 m resolution, namely B2 (blue), B3 92 
(green), B4 (red) and B8 (near-infrared). In addition, the two short wave infrared bands B11 and B12 93 
with 20 m resolution are pan-sharpened and included.  94 
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Two regions of interest are selected: Skagen, the northernmost tip of Denmark (Figure 1), and 95 
Nuuk, the capital of Greenland (Figure 2). These images are convenient for classification because the 96 
objects are relatively easy to identify as there is only ice and a few islands and sailing fishing boats in 97 
Nuuk. In contrast, a number of large ships, smaller boats, wakes and clouds are present at Skagen. 98 
The S2 images analyzed here are recorded over Skagen on 23 August 2016 shown in Figure 1 (with 99 
analyses in Figures 3-6) and excerpts of Figure 1 in Figures 7.a+b. The S2 images over Nuuk are from 100 
23 September (Figure 2), 16 October (Figure 8.a) and 23 October (Figure 8.b with analysis in Figure 101 
9), all in 2016. Nuuk is situated on 64° north latitude just below the polar circle. S2 passes over Nuuk 102 
around noon, therefore there is always light all year around, although shadows can be long during 103 
winter. S2 data over Nuuk are processed and made available with a few days interval except in 104 
December and January. Finally in Figure 10 we return to a cloudy image over Skagen from 1 105 
September 2016. 106 

 107 

Figure 1. Copernicus Sentinel-2A data [5 September 2016 at 10:30 a.m. UTC]. Southwest corner of 108 
Sentinel-2A image tile VNK showing Skagen—the northernmost tip of Denmark. The image is RGB 109 
contrast-enhanced so that large ships are visible but land is almost saturated. Left white box contains 110 
a fleet of fishing ships located in Skagerak west of Skagen (see Figure 7a). Right white box contains a 111 
number of container and tanker ships en route around Skagen and moored just east of Skagen in the 112 
tranquil sea of Kattegat (see Figure 7b), a number of which are waiting for bulk fuel.  113 

The images contain reflectances IBx(i,j) for each of the 13 multispectral bands x = 1, …, 8, 8A, 9, 114 
10, 11, 12. The pixel coordinates (i,j) are the (x,y) coordinates in units of the pixel resolution l, which 115 
is l = 10 m for the blue, green, red and near-infrared bands B2, B3, B4, and B8, respectively; l = 20 m 116 
for B5, B6, B7, B8A, B11, and B12; and l = 60 m for B1, B9, and B10.  117 

To detect an object, its reflectance must deviate from the sea background in one or more spectral 118 
bands. Most objects we have encountered reflect more light in all bands than the sea and we therefore 119 
subtract the sea background in all spectral bands. For resolving the objects optimally, we sum the 120 
reflectances in the four high-resolution bands B2 + B3 + B4 + B8 with sea background subtracted 121 

I4(𝑖, 𝑗)  =  IB2(𝑖, 𝑗) + IB3(𝑖, 𝑗)  + IB4(𝑖, 𝑗)  + IB8(𝑖, 𝑗) − background . (1) 

Since the sea covered substantially more than half of the area in all our images, the median 122 
reflectance value for each images provided an accurate and robust value for the background. This 123 
total reflectance image I4 has the highest resolution and contrast to the sea and is therefore optimal 124 
for object search and detection.  125 

To be seen, the object must exceed a threshold which depends on the scenario. Examples of the 126 
threshold dependence are shown in Figure 3 and discussed in the following subsection. In normal 127 
sea background, the threshold can be chosen rather low, whereas in icy Arctic oceans with 128 
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widespread ice floes or images with clouds, it may be advantageous to choose a higher threshold in 129 
order to distinguish objects from ice floes and clouds. Thereby the false alarm rate for ship detection 130 
is much reduced as the large number ice floes with high spatial and spectral variation is suppressed. 131 
However, as a result, we risk that, e.g., small and slow ships are “hidden” in a background of ice 132 
floes, as will be discussed later. 133 

 134 

Figure 2. Copernicus Sentinel-2A data [23 September 2016] tile 22WDS. The peninsula on which is 135 
situated the capital Nuuk of Greenland and sea around. Almost all islands, icebergs, sailing fishing 136 
boats and their wakes are correctly classified. The number refers to the list of objects with classifier 137 
details, and its color refers to object classification as listed (e.g., red = island). Center coordinates are 138 
Lat 64°10′55″N, Long 52°45′14″W, and pixel units are 10 m. 139 

 140 

Figure 3. Log–linear plot of the number of objects in Figures 1 and 8b (right) vs. object area A (in units 141 
of pixel area). As the threshold is increased, the number of objects and size generally decreases.  142 
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2.2. Spatial Classification of Segments as Objects 143 

Treating the total reflectance image I4(i,j) as a matrix, we construct a connectivity matrix in which 144 
the matrix pixels with reflectances above the threshold T are assigned 1 and those below 0. In this 145 
connectivity matrix, all neighboring entries with value 1 are then connected as a segment (s), and listed 146 
s = 1, Ns, where Ns is the total number of separate segments found in the image. Each segment has an 147 
observed area corresponding to the sum over the pixels in the segment 148 

A(s)  =  𝑙2 ∑ 1

𝐼4(𝑖,𝑗) > T

𝑖,𝑗 ∈ 𝑠  

 (2) 

 

We refer to Refs. [21–24] for other segmentation methods. 149 
The number of segments vs. area, which is the same as the number of objects vs. area, is shown 150 

in Figure 3 for the satellite images of Figures 1 and 8b for two different thresholds. Both thresholds 151 
are low compared to the up to 4 × 4048 grey levels minus background. The lower threshold is used 152 
in all figures except Figure 8a,b, where the higher threshold is employed. In both cases, the number 153 
of small objects decrease for the higher threshold as could be expected. The number of objects drop 154 
almost exponentially from hundreds of small objects to very few or none large objects. We find that, 155 
for the medium and large size objects of interest in this work, the detection and number is rather 156 
robust although their area may decrease slightly with increasing threshold. 157 

The classification scheme will later identify the segment as an object, e.g., a ship, island, iceberg, 158 
ice floe, wake or cloud. Segments are pixel based, whereas object classification is based on a priori 159 
knowledge or inspection. 160 

As described in Ref. [13], one can calculate the center of mass coordinates, length (L), width or 161 

breadth (B), orientation angle, eccentricity 𝜖 =  √1 − B2 /L2, convex area, circumference as well as a 162 
number of other spatial parameters for the segment. These parameters are exploited for spatial 163 
classification of the segments as objects. For example, ships are elongated and generally have small 164 
B/L, and ships sailing at high speed create a long wake resulting in a very small B/L. This is observed 165 
in Figure 4, where a scatter plot of B/L vs. observed area A is shown for all objects in Figure 1. The 166 
ships tend to cluster at low B/L or small A. The reason for this is that smaller boats may have breadths 167 
of order the pixel resolution l = 10 m or less, but usually appear at least two pixels wide, and they 168 
therefore appear to be less elongated than they actually are physically. If we add a pixel length l to 169 
each side of the true ship breadth B0 and length L0, the observed area is A = (B0 + 2l)(L0 + 2l), and the 170 
observed ratio of the breadth to width is approximately 171 

𝐵

𝐿
≅  

𝐵0 + 2𝑙

𝐿0 + 2𝑙
 ≅  𝑟 +  2𝑙 √

𝑟

A
 , (3) 

where r = B0/L0 is the true ship breadth to length ratio. As described in Ref. [13], this ratio is typically 172 
r ≅ 0.15 for most large ships, but for smaller boats filling a few pixels it can vary around this value. 173 
We therefore choose a larger value r = 0.25 to assure that most ships and small boats are captured. As 174 
result, we get fewer false negatives but at the cost of some more false positives. The ratio is shown 175 
with black curve in Figure 4, and defines the spatial classification of ships and boats below the curve 176 
and islands, icebergs and other objects above. In the following we shall classify elongated segments 177 
as having B/L less than the criterion of Equation (3) with r = 0.25, also shown by the black curve in 178 
Figure 4. 179 
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 180 

Figure 4. A spatial scatter plot of all segments (mainly ships and wakes) found in Figure 1 distributed 181 
according to B/L vs. area. The size of each circle is proportional to the average reflectivity I4 of the 182 
segment, and its redness RN, as defined in Equation (6), is given by its color according to the color 183 
bar on the right. Small blue segments are cold wakes. Segments below the purple line are sailing ships, 184 
and those below the black curve are ships and boats. 185 

The convex area of the segment provides additional spatial information. For example, the moon 186 
near new moon has a curved concave side. Its convex area is defined as the connected area which is 187 
the half moon, and which is larger than the solar reflective surface area. Between half and full moon, 188 
however, the convex area is the same as the reflective area. Likewise, a ship with or without wake is 189 
rectangular and straight, and therefore its area and convex area are almost the same. Islands and ice 190 
floes often curve or vary in width resulting in a convex areas larger than their observed area. We can 191 
therefore make use of the condition that boats should have a ratio of convex area to observed area 192 
less than 1.3, found by minimizing the number of confusions, whereby we optimize the 193 
discrimination of ice floes from ships.  194 

The segment circumference also provides information on the regularity of the segment, and one 195 
can define the compactness as the ratio of the circumference to area [9]. The limited pixel resolution 196 
does, however, not resolve object borders well, and we do not find this parameter useful for 197 
classifying smaller objects.  198 

In a more general principal component analysis of the 2D images (2DPCA), a number of 199 
eigenvectors and eigenvalues are calculated for the object. For example, a ship, the two principal 200 
spatial eigenvectors are the symmetry axes along and transversely to the ship axis, and the 201 
corresponding two eigenvalues are proportional to the ship length and breadth [13]. 2DPCA is useful 202 
for identifying the parameters that vary the most, but these are not necessarily the best for 203 
discrimination. In addition, it can be cumbersome to interpret the eigenvalues correctly in terms of 204 
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physical parameters and for classification. We therefore use the principal components only as a 205 
guideline for selecting the physical parameters most useful for classification. 206 

A very useful classification method is k-means clustering or k-nearest neighbor, where k objects are 207 
assigned a number of classifiers [23]. For example, a ship should have small B/L and area A smaller 208 
than ca. 300 pixels (30,000 m2) but convex area not much larger than its area, as well as spectral 209 
properties discussed below. A segment is classified to that object which deviates least from its 210 
classifiers, i.e., the object that the segment resembles the most. Least deviation can be defined in a 211 
number of ways, e.g., as a weighted least mean square value. We shall employ a more direct and 212 
sharp classification algorithm that for each classifier checks whether it is above or below a threshold. 213 
This threshold is a physical parameter that is determined by optimizing the classification algorithm 214 
to correctly classify known objects in satellite imagery.  215 

 216 

Figure 5. A spectral scatter plot of all segments (mainly ships and wakes) found in Figure 1 distributed 217 
according to redness RN vs. average reflectance I4. The size of each circle is proportional to the object 218 
area A, and its elongation B/L is given by its shading according to the grey level bar on the right.  219 
The spectral classifications based on RN and I4 are shown with text as wakes, grey, ice, and icebergs. 220 
The boat vs. cloud and ship vs. island discrimination are based on the spatial separation shown  221 
in Figure 4. 222 

2.3. Multispectral Classification 223 

For each segment, we calculate its average reflectance in each bands Bx (x = 1, …, 8, 8A, 9, …, 12) 224 

IBx(𝑠)  =  
𝑙2

𝐴(𝑠)
∑ IBx(𝑖, 𝑗)

𝑖,𝑗∈ 𝑠  

 (4) 
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The average reflectance of the segment is summed over the four high resolution bands is 225 

I4(𝑠)  =  IB2(𝑠)  + IB3(𝑠)  + IB4(𝑠)  + IB8(𝑠)   
 

(5) 

Another useful quantity is the “redness”, defined as the reflectance in the red and near-infrared 226 
with respect to the total reflectance 227 

RN(𝑠)  =  
IB4(𝑠)  +  IB8(𝑠)

I4(𝑠)
 

 (6) 

The multispectral imagery is mostly reflected sunlight. Cold objects tend to absorb more red and 228 
infrared light whereas warmer objects absorb some of the blue light, and reflect and emit more red 229 
and infrared light. For example, wakes and ice floes are cold with low redness whereas large ships, 230 
islands and land generally seem warmer with higher redness. The redness RN is therefore a good 231 
classifier, and we define the following four classes: 232 

 Red: 0.6 < RN < 1 233 
 Yellow: 0.45 < RN < 0.6 234 
 Green: 0.3 < RN < 0.45 235 
 Blue: 0 < RN < 0.3 236 

These RN classification parameter values were determined by minimizing the number of false 237 
alarms, i.e., off diagonal elements in the confusion matrix as discussed in Section 4, and thereby 238 
optimizing the classification algorithm. This color classification follows the visual spectrum and is 239 
shown in the color bars of Figures 4 and 9a, where the segments in the scatter plots are colored 240 
accordingly. The dashed lines next to the color bars show the class distinctions. 241 

Total reflectance and redness are just two classifiers based on the 13 spectral reflectances of the 242 
object. In a more general 2DPCA, we find that the two principal spectral components are indeed the 243 
total reflectance and the redness. A ship may have various colors but generally, its higher redness 244 
discriminates it from wakes, icebergs and grey ice. 245 

A similar result has been found to be very useful in the analyses of vegetation and  246 
forestation [21,22]. In that case, the crops and trees all have a reflection that varies more or less linearly 247 
with spectral band wavelength but with different slopes. The slope is the principal parameter that 248 
can discriminate between the different types of crops and trees. The redness parameter NR is in our 249 
analysis very similar to this slope parameter. 250 

Other bands also provide additional spectral details. For example, snow and, in particular, 251 
clouds have higher reflectance in the infrared bands B11 and B12. Accordingly, we define the infrared 252 
classifier 253 

IR(𝑠)  =  
IB11(𝑠)  +  IB12(𝑠)

I4(𝑠)
 

 (7) 

Since the segments have pixel resolutions of 10 m, the infrared bands B11 and B12 with 20 m 254 
resolution are pansharpened by dividing each infrared pixel into four weighted by the reflectance I4 255 
in the corresponding four pixels. More elaborate pan-sharpening methods, such as in Ref. [25], may 256 
be investigated in the future. 257 

The l = 60 m low-resolution bands B1, B9 and B10 are useful for detecting aerosol, water vapour 258 
and cirrus clouds respectively, but we do not use them is this analysis as we are primarily interested 259 
in classifying smaller objects such as ships and icebergs. For this reason we only find minor effects of 260 
our atmospheric correction using the sen2cor algorithm [24]. In addition, the background 261 
subtractions, threshold, and relative reflections and band ratios, and the spatial classification reduce 262 
the effect of atmospheric corrections at least in the images analyzed in this work. 263 

3. Classification Results 264 

In each image I4(i,j) all connected segments s = 1, …, NS are identified as described above. For all 265 
segments their position, length, width, area, convex area, circumference, spectral reflectances in the 266 
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four high-resolution bands and the resulting total reflectance, redness and infrared classifiers are 267 
calculated and listed. This information provides the basis for classifying each segment as one of the 268 
following objects: sailing ship, a slow ship or boat, island, iceberg, grey ice, wake or cloud. Each 269 
segment is assigned a number referring to a list with detailed spatial and multispectral parameters. 270 
The number is plotted on top of segments in Figures 2, 6–8 and 10, and the color and size of the 271 
number classifies the segment as a specific object (see Figure 2), as a ship + wake, ship, boat, island, 272 
wake, iceberg or grey ice. 273 

 274 

Figure 6. Zoom-in on the harbor of Nuuk (see Figure 8a). A number of islands, fishing boats and their 275 
wakes are observed and correctly classified.  276 

3.1. Wakes 277 

Wakes appear in two forms in the S2 imagery. Breaking waves are found all along the west coast 278 
of Skagen in Figures 1 and 7b. These waves are generally small and very cold and are seen in the 279 
scatter plots of Figure 2 as numerous small blue circles and in the scatter plot of Figure 4 at very low 280 
redness. Another type of wakes are those made by fast ships. These wakes often connected to the 281 
ships and very elongated and are classified as ship + wakes as will be discussed below. However, in 282 
a number of cases, large ships and catamarans make very long and wide wakes (and Kelvin waves) 283 
that split up in separate wakes. These wakes are not quite as cold as breaking waves and may be 284 
misidentified as discussed below. 285 
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(a) 

 
(b) 

Figure 7. (a) Excerpt from Figure 1 (left box) showing a large number of fishing boats west of Skagen 286 
that presumably have found a good fishing ground. Center coordinates are Lat 57°54′00″N, Long 287 
10°05′20″E. (b) Excerpt from Figure 1 (right box) showing a large number of tanker and container 288 
ships moored in the tranquil sea of Skagerak while waiting for bulk fuel. Center coordinates are Lat 289 
57°43′20″N, Long 10°40′00″E. 290 
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3.2. Sailing Ships 291 

Ships sailing fast enough create a long wake trailing behind [13,16,17]. The ship and wake are 292 
seen as distinct elongated objects with very small width to length ratio, typically B/L < 0.25, as shown 293 
with purple line in Figure 2. We classify these as ship + wake based on B/L alone. Their area is usually 294 
medium to large. The classification is independent of spectral properties as they can have all colors 295 
as seen in Figure 2, and their total reflectance is usually medium to large. 296 

We do, however, find erroneous classifications in Figure 8 from elongated drifting ice floes but, 297 
as will be discussed below, they often curve spatially and can be declassified for that reason. 298 

In Figure 7b, a large ship is sailing fast and at the same time turning sharply around the Skagen 299 
reef whereby part of its wake is separated from the ship. Since the wake curves, it is not classified as 300 
a ship, although it is elongated and matches spectrally. Instead, it is classified as ice according to the 301 
criteria described above. However, as it spatially is a continuation of a ship + wake, we can identify 302 
it as a wake. This example shows in detail how the classification works and how additional spatial 303 
information can be exploited intelligently. Alternatively, one might a priori assume that there are no 304 
icebergs in south Denmark, however, then, the classification algorithm would not work in the Arctic 305 
with the same set of classification parameters. 306 

The above examples show how the detailed physical understanding of the objects can be 307 
exploited to improve the classification. 308 

 
(a) 



Remote Sens. 2017, 9, x FOR PEER REVIEW  12 of 19 

 

 
(b) 

Figure 8. (a) Copernicus Sentinel-2A data as Figure 2 but from 16 October 2016, where snow has fallen. 309 
The land is overexposed to see the clouds and grey ice appearing as patches in the sea northeast of 310 
Nuuk. (b) Copernicus Sentinel-2 data but a week later, 23 October 2016. The grey ice abundance has 311 
increased considerably. 312 

3.3. Ships and Boats 313 

Ships are elongated and we use the observed ratio B/L as a spatial classifier for ships. Spectrally, 314 
we find that the ships have medium to large redness, generally such that smaller boats are green with 315 
0.45 < RN < 0.6, whereas larger ships are red with RN > 0.6. This subdivision is not important for ship 316 
classification but is practical since we anyway make this spectral subdivision for ice and islands for 317 
larger ratio B/L as discussed below. 318 

We also find that grey ice has a lower reflectance than most boats whereas icebergs have a higher 319 
reflectance than boats. Therefore, the reflectance I4 can be used to discriminate and classify  320 
these objects.  321 

3.4. Islands 322 

Islands come in all sizes and shapes but most have area larger than ships and shape less straight 323 
and elongated than ships and therefore larger B/L. In addition, their temperatures are often larger 324 
resulting in a redness above RN > 0.6, which is indicated by the red dashed line on the color bar of 325 
Figure 4. 326 

In Figures 7b and 10, a few large ships have fuel ship along side and therefore appear twice as 327 
wide. These are on the border of being identified as islands. The discrimination parameter r = B0/L0 328 
for the ratio of the ship breadth and width must therefore be chosen carefully. 329 

As seen in Figures 2 and 8, several islands around Nuuk are correctly classified but a few are not 330 
detected. If the islands are too close to land, their segment may not be separated from the land due 331 
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to ice floes clogging the narrow straight between them. In another case, two close-by islands cannot 332 
be separated and are mis-classified as a long ship. These and other false positives and negatives can 333 
be removed by adjusting the threshold for segment identification, however, at the cost of losing some 334 
low reflectance objects close to the threshold. 335 

3.5. Icebergs 336 

Icebergs also come in all shapes and sizes. Spectrally, they are distinguished by having high 337 
reflectance and being cold. On the redness scale, they are green 0.3 < RN < 0.45, as seen in Figure 9. A 338 
number of icebergs are found and correctly classified in Figures 2 and 8. 339 

  

Figure 9. Spatial and spectral scatter plots for Nuuk with abundant sea ice of Figure 8b. 340 

3.6. Grey Ice 341 

Ice comes in many forms, reflectivities and textures, and can be classified into subclasses such 342 
as new ice, slush ice (nilas), young ice, grey ice, grey-white ice, first year ice, first year thin ice, second 343 
year ice and multi-year ice. Eskimos have several dozens of different words for various types of ice 344 
with and without layers of snow. Ice appears in increasing area and number during winter in the 345 
Arctic particular in polar regions and in the ocean around Northeast Greenland, Jan Mayen and 346 
Svalbard. Reflection and form vary with the age of the ice and underlying ocean currents. 347 

As we are mainly interested in ships and icebergs, we classify all the above types of ice in one 348 
class that simply will be referred to as “grey ice”. It appears as low intensity textures in the sea and 349 
near the coast in the S2 winter images of Nuuk. Grey ice is not as highly reflecting (white) as icebergs 350 
but can be as cold.  351 

The grey ice may be thin and widespread and appear grey with low I4 as in the case of Figures 352 
8.a+b. It is therefore advantageous in such cases to increase the threshold in order to reduce the 353 
amount of sea ice objects and area. Instead other objects as icebergs, islands and ships appear which 354 
otherwise would have been connected spatially with grey ice. 355 

As mentioned above, we find that the convex area is a very useful spatial classifier for objects. 356 
We find that ships and round objects such as some islands and icebergs have convex area about same 357 
as the observed area, whereas ice floes and clouds often curve or have irregular surfaces. The 358 
resulting larger convex area successfully discriminates in particular ice floes from ships. 359 
Unfortunately, we also find exceptional cases where a fast and turning boat makes a curving wake 360 
that therefore is mistakenly identified as an ice flow but these can be spatially correlated with nearby 361 
ship + wakes. 362 

  363 
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3.7. Clouds 364 

Clouds obscure the S2 imagery [13] depending on weather, geographical coordinates, time of 365 
year, etc. For example, clouds cover Greenland about half of the time all year. Dense cloud cover 366 
renders the imagery useless and even degrades S1 SAR imagery. Despite this, often the cloud cover 367 
is only partial and is then useful to classify clouds. They come in all shapes and are generally white 368 
with redness within 0.45 < NR < 0.6 and therefore difficult to discriminate from boats [10,11] and ice 369 
floes. The S2 image in Figure 10 was selected because it contains a large number of smaller clouds, 370 
which challenge the classification algorithm. By visual inspection, one can distinguish ships from 371 
clouds from more complex texture features. We have thus far only included the spectral and spatial 372 
classifiers as described above, but can foresee further improvements of our physical classification 373 
algorithm embodying a number of more complex object texture features as for example described in 374 
[10] or as widely employed in large area SAR imagery [2]. 375 

Another way to discriminate clouds is through their infrared signature IR, which we find is 376 
larger for clouds than surface objects such as boats and ice floes generally. We find that clouds 377 
generally have IR > 0.45 and therefore use this classifier to separate them from ice floes, boats and 378 
other objects that have IR < 0.45. 379 

 380 

Figure 10. Copernicus Sentinel-2A data. Same as Figure 7b, but from 5 September 2016 at 10:30 a.m. 381 
UTC, where a number of clouds are present. 382 

3.8. Algal and Sea Clutter 383 

Some sea clutter, algal blooming and sea current sediments are seen near the coast in Figures 1, 384 
7 and 10. They only exceed the background threshold in a few cases, which are classified as grey 385 
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segments. For reasons of simplification, we ignore these few cases. In the future, we intend to extend 386 
the classifications to include algal, oil spill, pollution, windmills, oil rigs and other objects in the sea. 387 

4. Confusion Matrices, Classification Accuracy, False Positives and Negatives 388 

For each of the S2 images, the classification algorithm results in a number of segments in each 389 
class as described above. Each segment is subsequently identified as an object from a priori 390 
knowledge of the images. For example, we know where the islands are situated, and that breaking 391 
wakes are found along the coastline. Furthermore, we know that in the Skagen images the remaining 392 
objects are mainly ships or clouds since there are no icebergs or grey ice. On the other hand, in the 393 
Nuuk images, we can identify the few fishing boats as they all are sailing out of the harbor with long 394 
ship wakes trailing behind. The remaining objects are islands, icebergs or grey ice. 395 

Although this object classification is different for the Skagen and Nuuk images, the classification 396 
algorithm is the same and with the same spectral and spatial classification parameters. The only 397 
difference is the threshold and greyness parameters, which are larger in the Nuuk images because 398 
the widespread ice floes have low reflectances. 399 

In Table 1, we show the confusion matrix for all segments and objects in S2 images (Figures 1, 400 
7.a+b and 10) of Skagen and in Table 2 those from images (Figures 2 and 8.a+b) of Nuuk. The segment 401 
and object classification is described above. The classification parameters were chosen in order to 402 
maximize the number of correct identifications in the diagonal. Off diagonal numbers are  403 
mis-identifications or confused objects. False negatives lie above the diagonal and false positives 404 
(false alarms) below. Concerning ships and icebergs, one prefers false positives rather than false 405 
negatives in order not to miss any of these important objects. 406 

Table 1. Confusion matrix for classifications from the Skagen area, Figures 1, 7.a+b, and 10. First 407 
column lists the object classes and first row the segment classes (see text). Diagonal numbers are 408 
correct identifications and non-diagonal numbers are mis-identified (confused) as false positives or 409 
negatives. 410 

Skagen Denmark Ship + Wake Ship Boat Island Icebergs Wake Grey Ice Cloud Total PA 

Ship + Wake 25 0 0 0 0 0 0 0 25 1 

Ships 0 18 0 0 1 0 0 0 19 0.93 

Boats 0 0 61 5 0 0 16 8 90 0.68 

Islands 0 0 0 2 0 0 0 0 2 1 

Icebergs 0 0 0 0 0 0 0 0 0 - 

Wakes 0 0 0 0 1 82 5 0 88 0.93 

Grey ice 0 0 0 0 0 0 0 0 0 - 

Clouds 0 0 0 2 0 6 0 173 181 0.96 

Total 25 18 61 9 2 88 21 181 405  

UA 1.0 1.0 1.0 0.22 0 0.93 0 0.96  0.89 

Table 2. Confusion matrix as Table 1, but for the Nuuk area in Greenland, Figures 2 and 8.a+b. 411 

Nuuk Greenland Ship + Wake Ship Boat Island Iceberg Wake Grey Ice Cloud Total PA 

Ship + Wake 17 0 0 0 0 0 0 0 17 1.0 

Ships 0 1 0 0 0 0 0 0 1 1.0 

Boats 0 0 4 0 0 0 1 0 5 0.80 

Islands 0 3 0 12 0 0 0 0 15 0.80 

Icebergs 0 0 0 0 172 0 0 0 172 1.0 

Wakes 0 0 0 0 1 0 0 0 1 0 

Grey ice 0 0 21 0 0 3 20 3 47 0.43 

Clouds 0 0 0 0 0 0 3 98 101 - 

Total 17 4 25 12 173 3 24 101 359  

UA 1.0 0.25 0.16 1 0.99 0 0.83 0.97  0.90 

In Figure 10, there are a great number of clouds present. Spectrally, they appear in the yellow 412 
class but most are not elongated spatially and can therefore be separated from boats. The infrared 413 
classifier IR of Equation (7) is particular useful for correct cloud classification as can be seen in  414 
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Table 2. We validate the objects by visual inspection, since texture features distinguish the clouds 415 
from ships.  416 

In Table 1, the last column lists the object detection probability also called producer accuracy 417 
(PA), i.e., the number of correct classification with respect to the total number detected of that object. 418 
Only in few cases is an object not detected and therefore the number of objects present is almost the 419 
same as the detection number. Last row lists the segment detection probability also called user 420 
accuracy (UA). For all three Skagen images the overall accuracy is OA = 89%. Ship + wakes, ships and 421 
boats are to a high degree classified correctly with PA = 100%, 93% and 68%, respectively, and UA 422 
100%. Their performance factor F = 2 × PA × UA/(PA + UA) is F = 100%, 97% and 81% respectively.  423 

We conclude that the classification algorithm is excellent for distinguishing ship + wakes, ships 424 
and wakes. About 32% of the smaller boats are confused with grey objects and clouds. This is because 425 
very small boats have low reflectance and may not be sufficiently elongated when they only extend 426 
over few pixels. If we had a priori excluded ice around Skagen, we would have identified them 427 
correctly as boats in these images.  428 

In Table 2, we show the confusion matrix for Figures 2 and 8.a+b of the Nuuk area. Ship + wakes, 429 
ships, islands, icebergs and clouds are correctly classified to a high degree. In Figure 8b, grey ice 430 
appears in great numbers. Since the grey ice can appear in all forms and their number is large, a few 431 
also fall in green elongated class and are mis-identified as boats resulting in a low UA = 16%. 432 

It is not always possible by visual inspection to distinguish icebergs and grey ice, and it is likely 433 
that some are confused. This is not cosnidered in Table 2. The confusion is not important as most 434 
ships stay away from both. If icebreaker ships need to distinguish, our algorithm must be extended. 435 
This would require ground truth information on positions of icebergs and sea ice in a given satellite 436 
image. Ship + wakes are classified well, PA = 100%, but some cold islands are confused with ships. 437 
The overall accuracy is OA = 90%  438 

We learn from the supervised classification scheme applied to the Skagen and Nuuk images that 439 
small boats are difficult to separate spatially and spectrally from grey ice, especially because we have 440 
increased the grey ice parameter for the Nuuk images as compared to the Skagen images. The 441 
important lesson learned is that it will be extremely difficult to find small boats in grey ice if they lie 442 
still or are capsized. If they sail and create a wake, the boats and ships are easily detected and 443 
accurately classified in Sentinel-2 images. 444 

5. Conclusions 445 

Several sets of S2 MSI satellite images over Skagen, the northernmost tip of Denmark, and Nuuk, 446 
the capitol of Greenland, have been analyzed. Both contain a large number of ships and fishing boats 447 
as well as wakes, islands, icebergs, sea ice and clouds. The search and segmentation model finds all 448 
objects above a specified background. A supervised classification model was developed based on 449 
spatial and spectral classification parameters that have direct physical meaning. Detailed information 450 
on elongation, convex area, ship and wake correlations, allowed us to further improve and optimize 451 
the classification model which resulted in fewer confusions. 452 

The most important parameters (principal components) are the area and elongation for the 453 
spatial part, and the total reflectivity, redness and infraredness for the spectral part. The first four 454 
parameters are implicitly represented in the scatter plots of Figures 4 and 5 of all segments in Figure 455 
1 from Skagen, Denmark, and likewise in Figure 9 from Nuuk, Greenland. 456 

The optimal spectral and spatial classification parameters are the same for the satellite images 457 
analysed here. The only scene dependent parameter is the threshold which was increased in the 458 
complex Figure 8a,b to suppress the abundant sea-ice and cloud cover causing a number of false 459 
alarm. The scene dependent parameter is a weakness of the model, and should be upgraded by some 460 
automatic procedure. 461 

Where large ships are very elongated, smaller boats fill fewer pixels and therefore generally less 462 
elongated. The total reflectance is larger for icebergs, islands, and larger ships and their wakes, 463 
whereas waves and small ships generally have smaller reflectance. Islands and large ships typically 464 
have high redness, whereas icebergs, wakes and especially waves appear rather blue. Smaller ships 465 
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are more widely distributed between these limits and could be classified as boats if sufficiently 466 
elongated.  467 

The classification model proved very useful for detection and classification of sailing ships, 468 
anchored ships, fishing boats, icebergs, grey ice, wakes, islands, and clouds. The resulting confusion 469 
matrices display between 93% and 100% correct classifications of ships and icebergs in the less 470 
complex S2 MSI satellite images without grey ice and clouds. However, the satellite images with 471 
abundant sea ice or clouds were very challenging as these objects can come in a wide variation of 472 
spatial and spectral forms, which led to a substantial increase in the number of false positives and 473 
negatives as described in confusion matrices.  474 

The classification model was trained and optimized on most of the data including the complex 475 
images. Thus, validation on independent data was very limited. Consequently, the object 476 
classification may be overfitted and the diagonalization of the confusion matrices optimistic. 477 

These results can be compared to recent S1 SAR images regarding the ship classification 478 
accuracy. A recent analysis of S1 Interferometric Wide Swath data [5] includes 27 SAR images 479 
containing 7986 ships in total. The resolution is 10 m × 10 m and thus comparable to the S2 MSI. Their 480 
optimal algorithm has a detection probability of 89% with 14% false detections, and a performance F 481 
= 0.87. Their images do not contain sea ice (or clouds) and should therefore be compared to the 482 
producer accuracy PA = 100% for ship + wakes and PA = 93% for ships in our multispectral S2 images. 483 
In this comparison, we note that most of the boats in the multispectral images are smaller compared 484 
to the 7986 ships analyzed in the SAR images. Furthermore, one should take into account that much 485 
of S1 SAR data over the Arctic is in the Ground Range Detected either Extended Wide swath mode 486 
with resolution 50 m × 50 m or Interferometric mode with resolution 20 m × 22 m, both considerably 487 
worse than in Ref. [5]. Other satellites can provide better resolutions SAR and optical images in 488 
narrower regions, but generally optical classification is considerably more accurate than SAR. 489 

6. Outlook 490 

An obvious extension of the object classification in marine and arctic environments from S2 MSI 491 
is to include all 13 multispectral bands and to use pan- or hyper-sharpening techniques [26] for the 492 
bands with lower resolution. Especially the infrared hyperspectral index IR was very useful for cloud 493 
discrimination.  494 

Another extension is with regard to spatial and texture classification by exploiting further details 495 
of the spatial extent of the segments. For example, the curvature was useful for discriminating straight 496 
ship wakes from ice floes, and such shape and texture properties may be further exploited. 497 

Additionally, a comparison to Sentinel-1 SAR imagery with two polarizations will provide 498 
complementary and weather-independent information although with substantial lower resolution 499 
(except in the rare and narrow swath SM GRD full resolution mode). The synergy of S1 and S2 500 
imagery should be investigated for daily searching and tracking of ships, icebergs and ice floes. 501 
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